Time Dependent Heston Model
نویسندگان
چکیده
The use of the Heston model is still challenging because it has a closed formula only when the parameters are constant [Hes93] or piecewise constant [MN03]. Hence, using a small volatility of volatility expansion and Malliavin calculus techniques, we derive an accurate analytical formula for the price of vanilla options for any time dependent Heston model (the accuracy is less than a few bps for various strikes and maturities). In addition, we establish tight error estimates. The advantage of this approach over Fourier based methods is its rapidity (gain by a factor 100 or more), while maintaining a competitive accuracy. From the approximative formula, we also derive some corollaries related first to equivalent Heston models (extending some work of Piterbarg on stochastic volatility models [Pit05b]) and second, to the calibration procedure in terms of ill-posed problems.
منابع مشابه
Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach
This paper shows how one can obtain a continuous-time preference-free option pricing model with a path-dependent volatility as the limit of a discrete-time GARCH model. In particular, the continuous-time model is the limit of a discrete-time GARCH model of Heston and Nandi (1997) that allows asymmetry between returns and volatility. For the continuous-time model, one can directly compute closed...
متن کاملPortfolio Optimization under Double Heston Duffie-Kan Model and the Price Calculation of the European Option
In this paper, we present a new version of the Double Heston model, where the mixed Duffie-Kan model is used to predict the volatility of the model instead of the CIR process. According to this model, we predict the stock price and calculate the European option price by using the Monte-Carlo method. Finally, by applying the proposed model, we find the optimal portfolio under the Cardinality Con...
متن کاملAdi Finite Difference Schemes for Option Pricing in the Heston Model with Correlation
This paper deals with the numerical solution of the Heston partial differential equation (PDE) that plays an important role in financial option pricing theory, Heston (1993). A feature of this time-dependent, twodimensional convection-diffusion-reaction equation is the presence of a mixed spatial-derivative term, which stems from the correlation between the two underlying stochastic processes f...
متن کاملExact and approximate solutions for options with time-dependent stochastic volatility
In this paper it is shown how symmetry methods can be used to find exact solutions for European option pricing under a time-dependent 3/2-stochastic volatility model View the MathML source. This model with A(t) constant has been proven by many authors to outperform the Heston model in its ability to capture the behaviour of volatility and fit option prices. Further, singular perturbation techni...
متن کاملUnderlying Dynamics of Typical Fluctuations of an Emerging Market Price Index: The Heston Model from Minutes to Months
We investigate the Heston model with stochastic volatility and exponential tails as a model for the typical price fluctuations of the Brazilian São Paulo Stock Exchange Index (IBOVESPA). Raw prices are first corrected for inflation and a period spanning 15 years characterized by memoryless returns is chosen for the analysis. Model parameters are estimated by observing volatility scaling and cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Financial Math.
دوره 1 شماره
صفحات -
تاریخ انتشار 2010